Generating Semantically Valid Adversarial Questions for TableQA Yi Zhu^o, Yiwei Zhou^o, Menglin Xia^o

 \heartsuit Language Technology Lab, University of Cambridge, \diamondsuit Amazon Alexa

AAAI-RSEML 2021

Question answering on tabular data

- Input:
 - Natural language questions
 - Table/table schema
- Output:
 - Logical form
 - Final answer
- WikiSQL dataset [Zhong et al., 2017]
 - First large-scale dataset for TableQA (Text-to-SQL)
 - 24, 241 Wikipedia tables
 - 80, 654 pairs questions and SQL queries

Table:

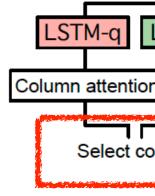
Rank	Nation	Gold	Silver	Bronze	Total
1	Russia	2	2	2	6
2	France	1	0	0	1
2	Hungary	1	0	0	1
4	Ukraine	0	1	1	2
5	Bulgaria	0	1	0	1
6	Poland	0	0	1	1
Question:	What is the	e bronze v	value associ	ated with ra	nks ove
SQL que	ry: SELECT	Bronze W	HERE Rank	x > 5	
Answer: 1					

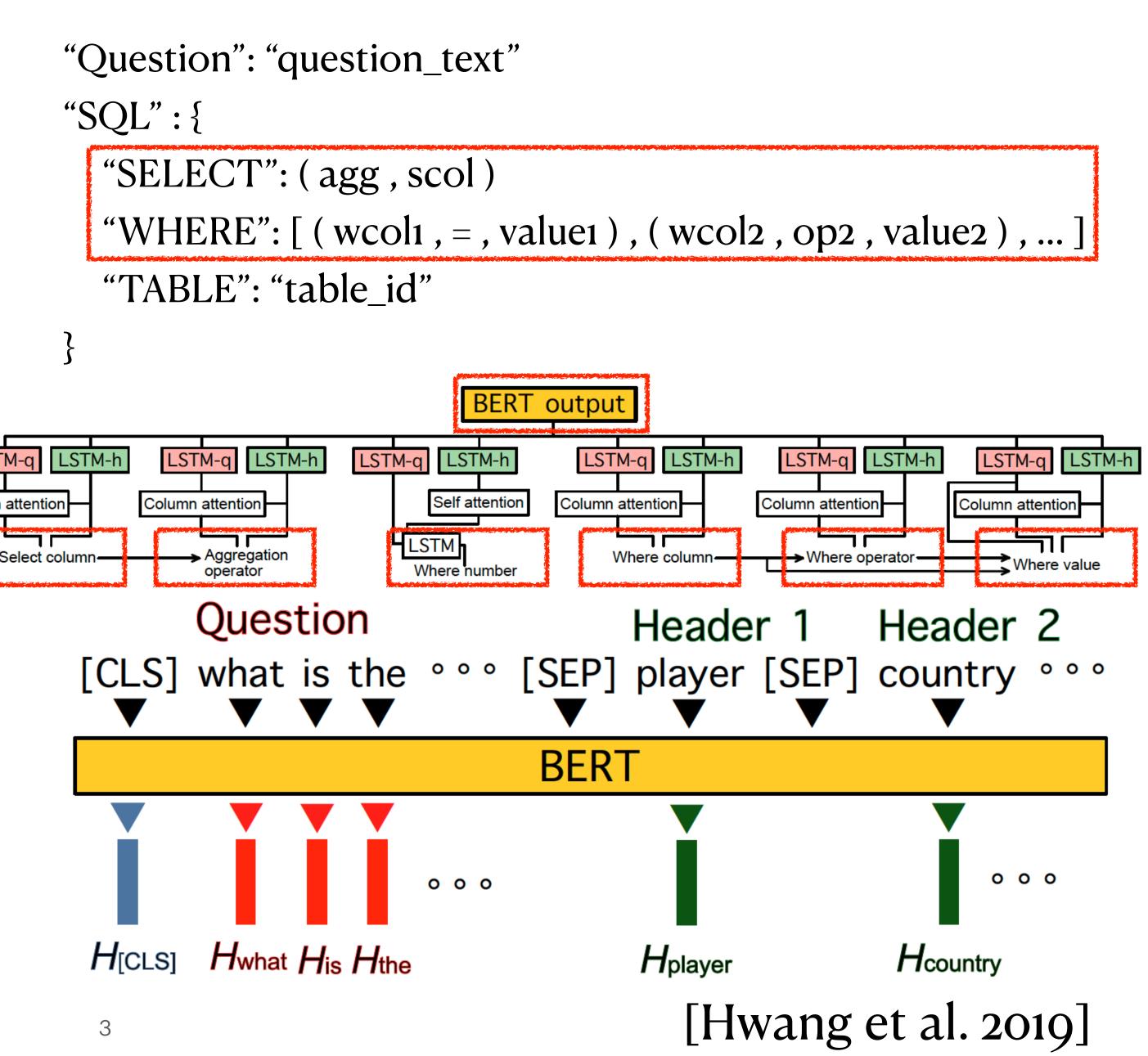
TableQA systems for WikiSQL

- BERT-based encoder [Devlin et al. 2019]
- SQL generation -> multiple classification tasks
- SQLova as target system
 - 80.7 Q-Acc and 86.2 A-Acc
- Evaluation
 - Query Acc. Q-Acc = $\frac{\text{#correct SQL}}{\text{#test even}}$

#test example

- - #test example

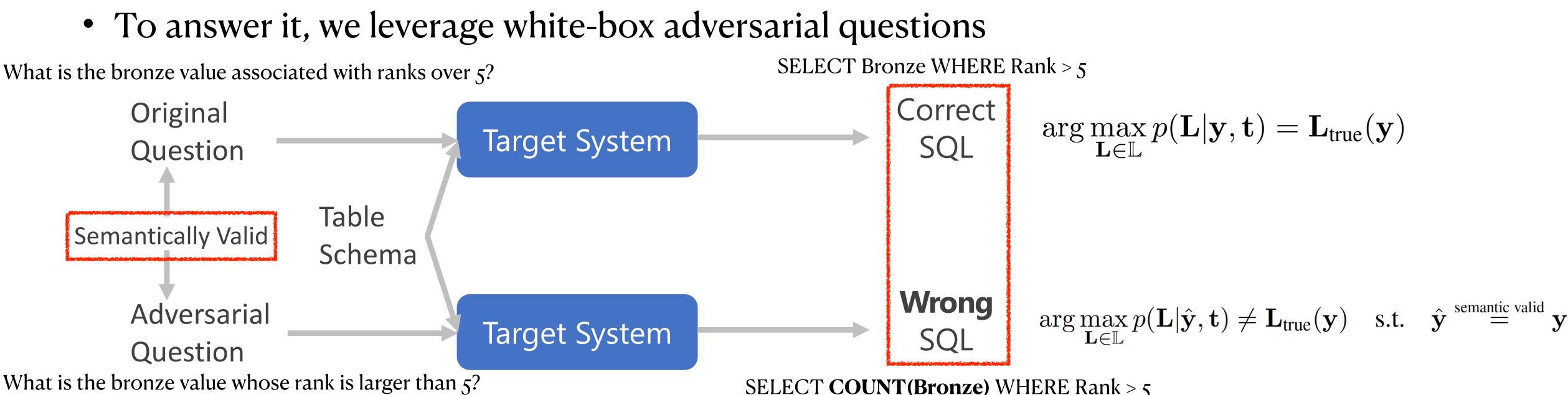




Motivation

• To what extent can the TableQA systems understand natural language questions and reason with given tables?

What is the bronze value associated with ranks over 5?



Semantically valid: For humans, adversarial questions yield the same correct SQL as original question

SELECT **COUNT(Bronze)** WHERE Rank > 5

Problem definition and previous methods

- Adversarial loss for white-box adversarial questions $\mathcal{L}_{adv}(\hat{\mathbf{y}}, \mathbf{L}_{true}(\mathbf{y}), \mathbf{t}) =$
- To produce *semantically valid* questions
 - 2019; Zhang et al. 2019, inter alia]
 - Few token swaps are less likely to lead to large semantic shift

$$\underset{1 \leq i \leq |\mathbf{y}|, \mathbf{\hat{y}}_i \in \mathcal{V}}{\arg \min} [\hat{\mathbf{y}}_i - \mathbf{y}_i]^T \nabla_{\mathbf{y}_i} \mathcal{L}_{adv}(\mathbf{\hat{y}}, \mathbf{L}_{true}(\mathbf{y}), \mathbf{t})$$

$$-\sum_{l \in \mathbf{L}_{\text{true}}(\mathbf{y})} \log(1 - p(l|\hat{\mathbf{y}}, \mathbf{t}))$$

• Most previous methods constrained to **local** models [Abraham et al. 2018; Ren et al.

Word/subword/character level manipulation such as insertion/deletion/substitution

- SAGE: Semantically valid Adversarial GEnerator for TableQA systems
- Generate adversarial questions at sequence level
 - Input: SQL query
 - systems

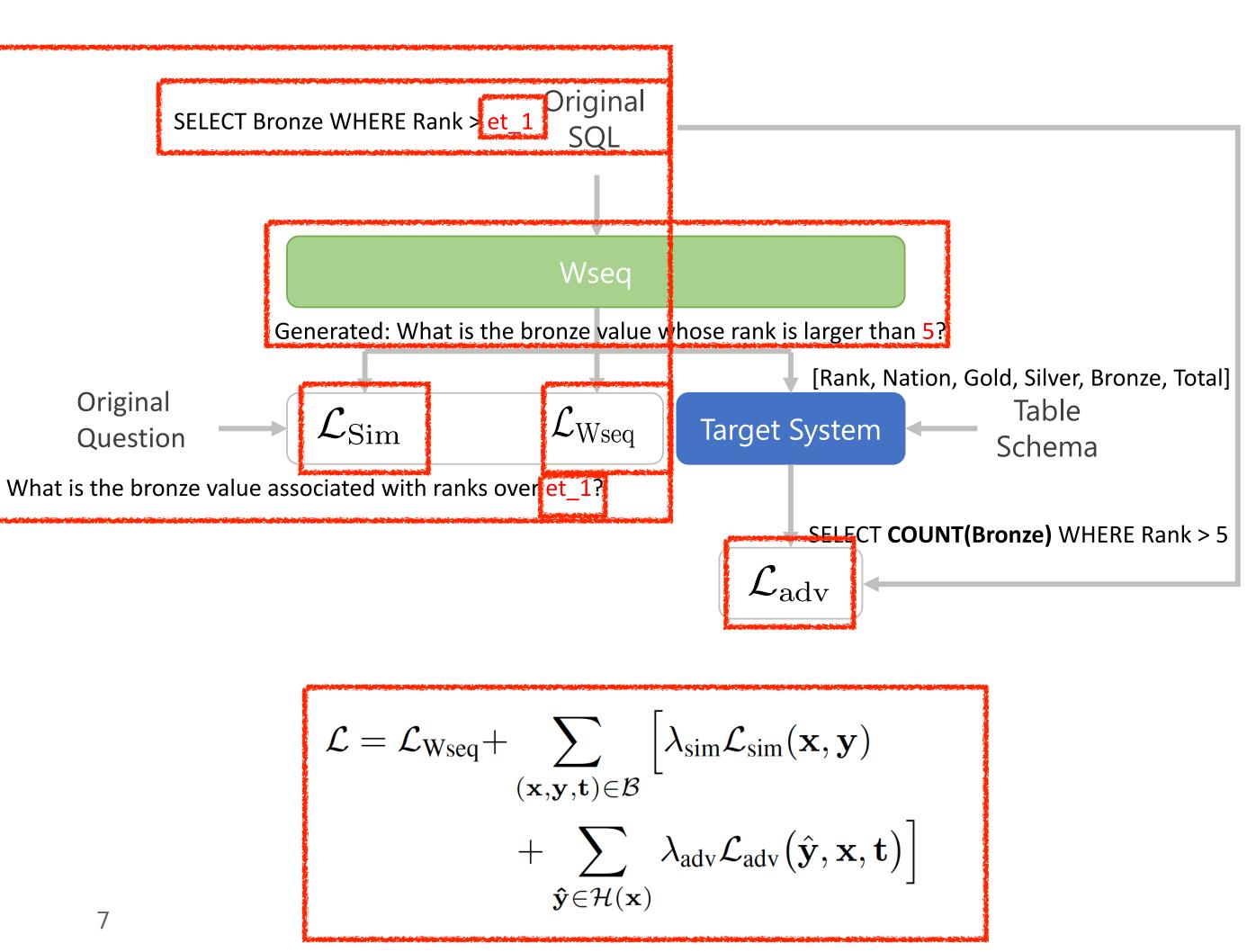
SAGE

• Output: Semantically valid and fluent adversarial question that can fool TableQA

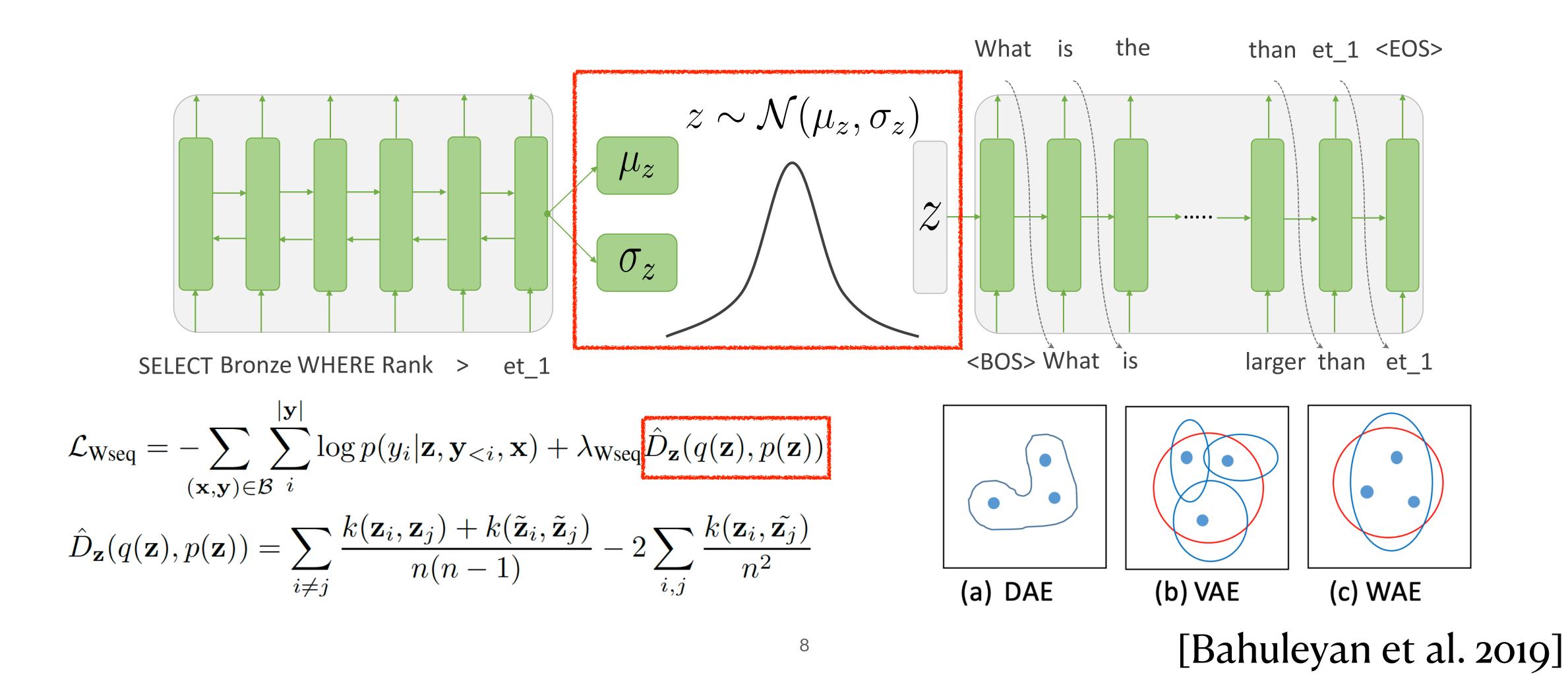
SAGE

Model architecture

- SAGE has *three* components, each with a corresponding loss:
 - Stochastic Wasserstein Seq2seq 1. model for question generation (Wseq)
 - Delexicalisation and minimum risk 2. training with SIMILE to enhance semantic validity (Wseq-S)
 - End-to-end training with 3. adversarial loss using Gumbel-Softmax



SAGE **Stochastic Wasserstein Seq2seq Model (Wseq)**



SAGE

Delexicalisation

- Delexicalisation
 - Adversarial questions need contain all the entities in order to maintain semantic validity
 - *i-th entity* (WHERE values) -> *et_i*
 - Reduce the length of the entity tokens
 - Improve entity coverage

Table:

Rank	Nation	Gold	Silver	Bronze	Total
1	Russia	2	2	2	6
2	France	1	0	0	1
2	Hungary	1	0	0	1
4	Ukraine	0	1	1	2
5	Bulgaria	0	1	0	1
6	Poland	0	0	1	1

Question: What is the bronze value associated with ranks over 5? **SQL query:** SELECT **Bronze** WHERE **Rank** > 5 Answer: 1

Delexicalised SQL query

SELECT Bronze WHERE Rank > et_1?

Delexicalised question

What is the bronze value associated with ranks over et_1?

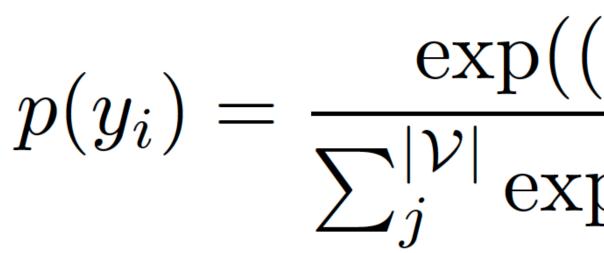
SAGE Minimum risk training with SIMILE (Wseq-S)

- SIMILE + minimum risk training [Wieting et al. 2019]
 - SIMILE
 - A pretrained neural network model calculating cosine similarity between embeddings of two sentences
 - Why SIMILE over other string matching based metrics like BLEU?
 - Our generated questions
 - Different in lexical/syntactic realization
 - High semantic similarity
 - Correlate better with human judgement
 - Minimum risk training [Shen et al. 2016]

ns
$$\mathcal{L}_{sim}(\mathbf{x}, \mathbf{y}) = \mathbb{E}_{p(\hat{\mathbf{y}}|\mathbf{x})}[1 - SIMILE(\mathbf{y}, \hat{\mathbf{y}})]$$

 $\triangleq \sum_{\hat{\mathbf{y}} \in \mathcal{H}(\mathbf{x})} (1 - SIMILE(\mathbf{y}, \hat{\mathbf{y}})) \frac{p(\hat{\mathbf{y}}|\mathbf{x})}{\sum_{\hat{\mathbf{y}}' \in \mathcal{H}(\mathbf{x})} p(\hat{\mathbf{y}}'|\mathbf{x})}$

End-to-end training with adversarial loss using Gumbel-Softmax



SAGE

• To enable end-to-end training, we adopt the Gumbel-Softmax [Jang et al., 2017]

 $p(y_i) = \frac{\exp((\log(\pi_i) + g_i)/\tau)}{\sum_{j=1}^{|\mathcal{V}|} \exp((\log(\pi_j) + g_j)/\tau)}$

Experiments Baselines

- Local $\underset{1 \le i \le |\mathbf{y}|, \mathbf{\hat{y}}_i \in \mathcal{V}}{\operatorname{arg\,min}} [\hat{\mathbf{y}}_i \mathbf{y}_i]^T \nabla_{\mathbf{y}_i} \mathcal{L}_{\operatorname{adv}}(\hat{\mathbf{y}}, \mathbf{L}_{\operatorname{true}}(\mathbf{y}), \mathbf{t})$
 - Unconstrained: Search within the whole embedding space
 - kNN: search within 10 nearest neighbors of the original token embedding
 - CharSwap: Swap or add a character to the original token to change it to <unk>
- Seq2seq-based
 - Seq2seq without delexicalisation
 - Seq2seq
 - Wseq (ours)
 - Wseq-S (ours)

Results

Automatic evaluation

			Semantic validity			Flip rate		Fluency	
		BLEU	METEOR	SIMLE	Ecr (%)	Qfr (%)	Afr (%)	Perplexity	
	Original Questions	_	_	_	_	_	_	816	
al	Unconstrained	79.26	51.93	87.35	100	49.46	41.23	1596	
ocal	kNN	80.39	56.03	93.30	100	23.80	18.23	1106	
	CharSwap	80.76	53.91	90.51	100	26.10	22.09	2658	
ased	Seq2seq w/o delex	32.69	35.77	80.09	68.97	12.62	11.25	515	
bas	Seq2seq	34.91	37.58	82.79	99.38	8.98	6.69	561	
eq-	Wseq (ours)	33.72	37.70	82.18	98.91	8.37	6.91	474	
Seq2s	Wseq-S (ours)	36.05	37.94	84.32	99.46	7.76	6.14	610	
	SAGE (ours)	33.54	36.35	82.38	99.11	17.61	14.46	710	

- Entity coverage rate $Ecr = \frac{v}{r}$; v = |generated questions with all required entities|, <math>m = |all generated questions|m
- Query flip rate Qfr = $\frac{q}{m}$; Answer flip rate Afr = $\frac{a}{m}$

Results

Human evaluation

- Randomly sample 100 questions from the WikiSQL test set
- Three native expert annotators to annotate the generated adversarial questions
 - Semantic validity
 - Whether they use the *same* columns & rows in table for the same answer
 - Fluency
 - Rank questions including the original one in terms of *fluency* and *naturalness*

	Validity (%)↑	Fluency (rank) ↓
Original Questions	_	2.2
Unconstrained kNN	20.3 64.0	4.39 3.39
Seq2seq w/o delex	78.7	2.99
Seq2seq Wseq (ours) Wseq-S (ours)	89.3 88.7 90.3	2.56 2.42 2.61
SAGE (ours)	78.7 [†]	2.71 [‡]

[†]: Significant compared to kNN (p < 0.01).

[‡]: Significant compared to kNN (p < 0.01) and Seq2seq w/o delex (p < 0.05).

Results **Qualitative analysis**

Question

- What is the sum of wins after 1999? (Original)
- What is the sum of wins **downs** 1999? (Unconstrained)
- What is the sum of wins after 1999 is (kNN)
- How many wins in the years after 1999? (Seq2seq)
- What is the total wins for the year after 1999? (Wseq)
- Semantic Validity What is the sum of wins in the year later than 1999? (Wseq-S How many wins have a year later than 1999? (SAGE)
- What was the date when the opponent was at South Carolina What was the date when the **jord** was at South Carolina? (U What was the date when the opponent was at South Carolina Fluency What date was the opponent at South carolina ? (Seq2seq) What is the date of the game against at South Carolina? (Ws
 - What is the date of the opponent at South Carolina ? (Wseq-S) On what date was the opponent at South Carolina ? (SAGE)

	SQL	Η
	SELECT SUM(Wins) WHERE Year > 1999	_
	\checkmark	Ν
	SELECT Wins WHERE Year > 1999	Ν
	\checkmark	Y
	\checkmark	Y
-S)	SELECT COUNT(Wins) WHERE YEAR > 1999	Y
	SELECT COUNT(Wins) WHERE YEAR > 1999	Y
a? (Original)	SELECT Date WHERE Opponent = at South Carolina	$\overline{3.0}$
Unconstrained)	\checkmark	5.3
a, (kNN)	\checkmark	4.0
	\checkmark	1.3
/seq)	\checkmark	4.7
S)	\checkmark	4.0
	\checkmark	1.7

Adversarial Training with SAGE

Test performance

- Target systems
 - SQLova-B with BERT Base encoder
 - SQLova-L with BERT Large encoder
- 1. Train SAGE-B and SAGE-L for both systems
- 2. Generate adversarial questions on WikiSQL training set **AdvData-B** and **AdvData-L**
- 3. Retrain two SQLova-B models with
 - WikiSQL training set + AdvData-B
 - WikiSQL training set + AdvData-L
- Evaluate the two SQLova-B models on WikiSQL test set

	AdvData-B		AdvData-L		
	Q-Acc	A-Acc	Q-Acc	A-Acc	
Before Aug.	79.0	84.5	79.0	84.5	
+30k	79.5	85.2	79.3	85.0	
+56k	79.4	85.5	79.6	85.3	

Adversarial Training with SAGE

Robustness

 We attack the retrained two SQLova-B models with different methods

			And Sand Trained States of Andrews States of States of States		and the second that the second second	
	Before Aug.		AdvD	ata-B	AdvData	
Attack model	Qfr	Afr	Qfr	Afr	Qfr	Af
Unconstrained kNN SAGE	53.97 27.36 16.55	46.07 21.85 12.31	53.46 25.29 10.30	45.15 19.83 8.09	51.01 25.57 14.21	43 20 12
	b					

Conclusion

- We proposed SAGE, the first sequence-level model for white-box adversarial attack on TableQA systems
 - Wasserstein Seq2seq model
 - Delexicalization and semantic similarity regularization
 - Adversarial loss with Gumbel-Softmax
- SAGE is effective in consolidating semantic validity and fluency while maintaining high flip rate of generated adversarial questions
- Generated adversarial questions have been demonstrated to improve TableQA systems' performance and robustness

Thank you! Questions? Contact: yz568@cam.ac.uk