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Motivations

Widespread existence of Vertically Partitioned Data

A loan application to the digital finance company.
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Motivations

General Data Protection Regulation (GDPR)

Direct access to the data in other providers or sharing of the data
may be prohibited due to legal and commercial reasons.
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Challenges

Existing Vertically Federated Learning Algorithms
Cooperative statistical analysis
Linear regression
Association rule-mining
K-means clustering
Logistic regression
XGBoost

Weakness of existing vertically federated learning algorithms
Assume the models are implicitly linearly separable, i.e.,
f (x) = g ◦ h(x) = g ◦

∑q
`=1 h`(wG` , xG`).

Kernel models usually take the form of f (x) =
∑N

i αiK(xi, x) which
do not satisfy the assumption of implicitly linear separability.

It is still an open question to train the vertically partitioned data
efficiently and scalably by kernel methods while keeping data privacy.
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Vertically Partitioned Federated Kernel Learning
Preliminaries

A training set S = {(xi, yi)}N
i=1, where xi ∈ Rd and yi ∈ {+1,−1} for

binary classification or yi ∈ R for regression.
x = [xG1 , xG2 , . . . , xGq ], and xG`

∈ Rd` is stored on the `-th worker and∑q
`=1 d` = d.

Let L(u, y) be a scalar loss function which is convex with respect to
u ∈ R.
A positive definite kernel function K(x′, x) and the associated
reproducing kernel Hilbert spaces (RKHS) H. We have
〈f (·),K(x, ·)〉H = f (x).

Problem Statement
A kernel method tries to find a function f ∈ H

arg min
f∈H
R(f ) = E(x,y)∈SL(f (x), y) +

λ

2
‖f‖2
H (1)

λ > 0 is a regularization parameter.
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Vertically Partitioned Federated Kernel Learning

Active and Passive workers
According to whether the label is included in a worker, we divide the
workers into two types:

active worker, is the data provider who holds the label of a sample.
passive worker, only has the input of a sample.
The active worker would be a dominating server in federated
learning, while passive workers play the role of clients.

Goal of Vertically Partitioned Federated Kernel Learning
Make active workers to cooperate with passive workers to solve the
nonlinear learning problem (1) on the vertically partitioned data
{D`}q

`=1 while keeping the vertically partitioned data private.
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Random Feature Approximation

Theorem 1 [Rudin 1962]
A continuous, real-valued, symmetric and shift-invariant function
K(x, x′) = K(x− x′) on Rd is a positive definite kernel if and only if there
is a finite non-negative measure P(ω) on Rd, such that
K(x− x′) =

∫
Rd eiωT (x−x′)dP(ω) =∫

Rd×[0,2π] 2 cos(ωTx + b) cos(ωTx′ + b)d(P(ω)× P(b)), where P(b) is a

uniform distribution on [0, 2π], and φω(x) =
√

2 cos(ωTx + b).

Random Feature Approximation

K(x, x′) ≈ 1
m

m∑
i=1

φωi(x)φωi(x′) (2)

m is the number of random features
ωi are drawn from P(ω).

Gaussian RBF kernel K(x, x′) = exp(−||x− x′||2/2σ2), P(ω) is a
Gaussian distribution with density proportional to exp(−σ2‖ω‖2/2)
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Doubly Stochastic Kernel Methods
Doubly Stochastic Gradient

the doubly stochastic gradient of loss function L(f (xi), yi) w.r.t. the
sampled instance (x, y) and the random direction ω is
ζ(·) = L′(f (xi), yi)φω(xi)φω(·).
the stochastic gradient of R(f ) can be formulated as follows.

ζ̂(·) = ζ(·) + λf (·) = L′(f (xi), yi)φωi(xi)φωi(·) + λf (·) (3)

The doubly stochastic gradient is unbiased: E(x,y)Eω ζ̂(·) = ∇R(f )

Updating rule
Given stepsize γt, let f1(·) = 0, the updating rule is

ft+1(·) = ft(·)− γt (ζ(·) + λf (·)) =
t∑

i=1

−γi

t∏
j=i+1

(1− γjλ)ζi(·) (4)

=
t∑

i=1

−γi

t∏
j=i+1

(1− γjλ)L′(f (xi), yi)φωi(xi)︸ ︷︷ ︸
αt

i

φωi(·)
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Federated Doubly Stochastic Kernel Learning

System Structure

Worker 1 Worker q

Data privacy

Model privacy

Tree-structured 
communication

Worker 2

CoordinatorActive

Passive

Figure: System structure of VFKL.

The main idea behind VFKL’s parallelism is to vertically divide the
computation of the random features φω(x) =

√
2 cos(ωTx + b) and f (x).

Heng Huang VFKL RSEML AAAI2021 10 / 30



System Structure

Data Privacy

Divide the computation of φωi(xi) =
√

2 cos(ωT
i xi + b) to avoid

transferring the local data (xi)G` to other workers. i.e.,
1 send a random seed to the `-th worker.
2 generate the random direction ωi uniquely according to the

random seed.
3 locally compute (ωi)

T
G`(xi)G` + b which avoids directly transferring

the local data.

Modal Privacy
1 The model coefficients αi are stored in different workers

separately and privately.
2 To compute f (x), we locally compute f `(x) =

∑
i∈Λ` αiφωi(x) and

transfer it to other worker, and f (x) can be reconstructed by
summing over all the f `(x).
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System Structure
Tree-Structured Communication
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Figure: Illustration of tree-structured communication with two totally different
tree structures T1 and T2.

Two totally different tree structures are used in the computation of
φωi(xi) =

√
2 cos(ωT

i xi + b) to protect the data privacy (see Alg. 3).
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VFKL Algorithm 1: Main Procedure

Input: P(ω), local normalized data D`, regularization parameter λ, constant
learning rate γ.

1: keep doing in parallel
2: Pick up an instance (xi)G`

from the local data D` with index i.
3: Send i to other workers using a reverse-order tree structure T0.
4: Sample ωi ∼ P(ω) with the random seed i for all workers.
5: Use Algorithm 3 to compute ωT

i xi + b and locally save it.
6: Compute f `

′
(xi) for `′ = 1, . . . , q by calling Algorithm 2.

7: Use tree-structured communication scheme based on T0 to compute
f (xi) =

∑q
`=1 f `(xi).

8: Compute φωi (xi) according to ωT
i xi + b.

9: Compute αi = −γ (L′(f (xi), yi)φωi (xi)) and locally save αi.
10: Update αj = (1− γλ)αj for all previous j in the `-th worker and other

workers.
11: end parallel loop
Output: αΛ` .
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VFKL Algorithm 2: Computing f `(x)

Input: P(ω), αΛ` , Λ`, x.
1: Set f `(x) = 0.
2: for each i ∈ Λ` do
3: Sample ωi ∼ P(ω) with the random seed i for all workers.
4: Obtain ωT

i x + b if it is locally saved, otherwise compute ωT
i x + b by

using Algorithm 3.
5: Compute φωi (x) according to ωT

i x + b.
6: f `(x) = f `(x) + αiφωi (x)
7: end for

Output: f `(x)
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VFKL Algorithm 3: Computing ωT
i xi + b

Input: ωi, xi

{// This loop asks multiple workers running in parallel.}
1: for ˆ̀ = 1, . . . , q do
2: Compute (ωi)

T
G ˆ̀

(xi)G ˆ̀
and randomly generate a uniform number b ˆ̀ from

[0, 2π] with the seed σ ˆ̀
(i).

3: Calculate (ωi)
T
G ˆ̀

(xi)G ˆ̀
+ b ˆ̀.

4: end for
5: Use tree-structured communication scheme based on the tree structure

T1 for workers {1, . . . , q} to compute ξ =
∑q

ˆ̀=1

(
(ωi)

T
G ˆ̀

(xi)G ˆ̀
+ b ˆ̀

)
.

6: Pick up `′ ∈ {1, . . . , q} − {`} uniformly at random.
7: Use tree-structured communication scheme based on the totally different

tree structure T2 for workers {1, . . . , q} − {`′} to compute b
`′

=
∑

ˆ̀6=`′ b ˆ̀.

Output: ξ − b
`′

.
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Algorithm Analysis

Lemma 1

The output of Algorithm 3 (i.e.,
∑q

ˆ̀=1

(
(ωi)

T
G ˆ̀

(x)G ˆ̀
+ bˆ̀

)
− b`

′
is equal to

ωT
i x + b, where each bˆ̀ and b are drawn from a uniform distribution on

[0, 2π], b`
′

=
∑

ˆ̀6=`′ bˆ̀, and `′ ∈ {1, . . . , q} − {`}.

1 VFKL can produce the same doubly stochastic gradients
as that of a DSG algorithm.
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Convergence Analysis

Assumption 1
1 There exists an optimal solution, denoted as f∗, to the problem (1).
2 We have an upper bound for the derivative of L(u, y) w.r.t. its 1st

argument, i.e., |L′(u, y)| < M.
3 The loss function L(u, y) and its first-order derivative are
L-Lipschitz continuous in terms of the first argument.

4 We have an upper bound κ for the kernel value, i.e., K(x, x′) ≤ κ.
We have an upper bound φ for random feature mapping, i.e.,
|φω(x)φω(x′)| ≤ φ.
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Convergence Analysis

Theorem 2
Set ε > 0, min{ 1

λ ,
ελ

4M2(
√
κ+
√
φ)2 } > γ > 0, for Algorithm 1, with γ = εϑ

8κB

for ϑ ∈ ( 0, 1 ], under Assumption 1, we will reach E
[
|ft(x)− f∗(x)|2

]
≤ ε

after
t ≥ 8κB log(8κe1/ε)

ϑελ
(5)

iterations, where B =

[√
G2

2 + G1 + G2

]2

, G1 = 2κM2

λ ,

G2 = κ1/2M(
√
κ+
√
φ)

2λ3/2 and e1 = E[‖h1 − f∗‖2
H].

VFKL converges to the optimal solution almost at a rate of O(1/t).

Heng Huang VFKL RSEML AAAI2021 18 / 30



Security Analysis

Assumption 2: Semi-honest Security
All workers will follow the protocol or algorithm to perform the correct
computations. However, they may retain records of the intermediate
computation results which they may use later to infer the data of other
workers.

Inference Attack
An inference attack on the `-th worker is to infer a certain feature group
G of sample xi which belongs to other workers without directly
accessing it.

Theorem 3
Under the semi-honest assumption, the VFKL algorithm can prevent
inference attack.
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Complexity Analysis

Computational Complexities
1 The computational complexity for one iteration of VFKL is O(dqt).
2 The total computational complexity of VFKL is O(dqt2).

Communication Complexities
1 The communication cost for one iteration of VFKL is O(qt)
2 The total communication cost of VFKL is O(qt2).

d is the dimension of the samples
q is the number of the workers
t is the total iteration number.
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Validations

Comparison Methods
PP-SVMV [Yu et al.(2006)] SOTA in Kernel federated learning
feild.
SecureBoost [Cheng et al.(2019)] recently proposed to generalize
the gradient tree-boosting algorithm to federated scenarios.
SOTA kernel classification solvers that can access the whole data
samples without the federated learning constraint: LIBSVM
[Chang and Lin (2011)] and DSG [Dai et al. (2014)].
FD-SVRG [Wan et al. (2007)], which uses a linear model to
comparatively verify the accuracy of VFKL.
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Validations

Datasets: eight benchmark binary classification datasets
and two real-world financial datasets.

Datasets Features Sample size
gisette 5,000 6,000

phishing 68 11,055
a9a 123 48,842

ijcnn1 22 49,990
cod-rna 8 59,535

w8a 300 64,700
real-sim 20,958 72,309
epsilon 2,000 400,000

defaultcredit 23 30,000
givemecredit 10 150,000
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Validation Results
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(b) phishing
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(e) cod-rna
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(f) w8a
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(g) real-sim
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(h) epsilon
Figure: The results of binary classification above the comparison methods.
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Validation Results
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(b) givemecredit
Figure: The results of binary classification above the comparison methods.
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Validation Results
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Figure: The elapsed time of different structures on four datasets.
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Validation Results

2.2 4.4 6.6 8.8 11.0

Number of instances (x103)

10-1

100

101

102

103

T
ra

in
in

g 
ti

m
e 

(s
ec

) FDSKL
PP-SVMV

(a) phishing

0.9 1.9 2.9 3.9 4.8

Number of instances (x104)

100

101

102

103

104

T
ra

in
in

g 
ti

m
e 

(s
ec

) FDSKL
PP-SVMV

(b) a9a

1.1 2.4 3.6 4.7 5.9

Number of instances (x104)

100

101

102

103

104

T
ra

in
in

g 
ti

m
e

FDSKL
PP-SVMV

(c) cod-rna

1.2 2.5 3.8 5.1 6.4

Number of instances (x104)

100

101

102

103

104

T
ra

in
in

g 
ti

m
e 

(s
ec

) FDSKL
PP-SVMV

(d) w8a
Figure: The change of training time when increasing the number of training
instances.
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Validation Results
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Figure: The boxplot of test errors of three state-of-the-art kernel methods,
tree-boosting method (SecureBoost), linear method (FD-SVRG) and our
VFKL.
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Asynchronous Communication
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Summary

1 Introduce a federated doubly stochastic kernel learning (i.e.,
VFKL) algorithm

Effectively handle vertically partitioned data
Produce a sublinear convergence rate O(1/t)
Guarantee data security under the semi-honest assumption
First efficient and scalable privacy-preservation federated kernel
method

2 Validations
Confirm the effectiveness of our VFKL
Show the superiority of our VFKL compared with the existing SOTA
kernel, tree-boosting and linear algorithm
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Thank You!
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