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Motivation



Challenges

Targeted Model Poisoning

• Derived from data poisoning

• Label flipping attack

• Change the label of data so 

the model will misclassify test 

samples

In the MNIST example, the adversary changes the 

label of digit 1 to 7 and uploads the poisoned model.



Observations
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Corrupted 

Models

The objectives of models

Attackers have a different 

objective than honest users.

The malicious objective is 

more and more obvious as 

training converges

True objective

Poisoner objective



Intuition
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Can we design an algorithm to 

detect malicious objective, 

especially when the model 

converges?

• Attackers have a different 

objective than honest users.

• The malicious objective is more 

and more obvious as training 

converges.

True objective

Poisoner objective



Method



Our Algorithm
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Residuals Normalization
Weight

Computation

Algorithm

Linear 

Regression
Parameter

Restriction

• Use Repeated Median to 

guarantee a 50% break 

down point

• Eliminate unreasonably large 

parameter values

• Assign weights to models based on 

the coordinate-wise residual
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Notations: For each user k in [K], where [K] = 1, 2, …, K.

We use 𝑀 𝑘 to denote its model and 𝑦𝑛
(𝑘)

to denote its n-th

parameter. We collect each 𝑦𝑛
(𝑘)

to form                              .

Step 1: Linear Regression
• Repeated Median Estimation to estimate a robust 

distribution of coordinate-wise parameter n.
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Step 2: Weight Computation
• Compute the residuals (r) between parameters and the 

estimated line.

• Normalize residuals

, where 

and 



Our Algorithm

11

Step 2: Weight Computation （Cont.)

• Assign weights according to normalized residuals (e).

, where

and  hkk is the k-th diagonal of matrix 

• Reweight weights by

• Weights with larger variations will receive larger weights in 

the final model.
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Residuals Normalization
Weight

Computation

Algorithm

Linear 

Regression

Parameter

Restriction

Step 3: Extreme value correction
• For parameter with        less than a threshold δ, we change 

its value to the corresponding value on the estimated line.

• This step removes the extreme values.

Final Step: Reweighted Aggregation
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Experiments
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Two Scenarios

Label-flipping Attacks

Datasets

• MNIST & CIFAR-10

Backdoor Attacks • Amazon Reviews Dataset



MNIST Dataset
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Label-flipping Attack Backdoor Attacker



Model Poisoning Attacks
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• CIFAR-10 Dataset

• Amazon Review Dataset

# of Attackers 0 1 2 3 4

FedAvg 88.96% 85.74% 82.49% 82.35% 82.11%

Median 88.11% 87.69% 87.15% 85.85% 82.01%

Trimmed Mean 88.70% 88.52% 87.44% 85.36% 82.35%

Repeated Median 88.60% 87.76% 86.97% 85.77% 81.82%

FoolsGold 9.70% 9.57% 10.72% 11.42% 9.98%

Ours 89.17% 88.60% 86.66% 86.09% 85.81%

# of Attackers 0 1 2 3 4

FedAvg 91.81% 86.91% 24.97% 12.52% 9.78%

Median 91.73% 91.87% 91.79% 91.43% 91.17%

Trimmed Mean 91.81% 91.82% 91.82% 91.49% 91.26%

Repeated Median 91.55% 88.41% 23.22% 11.70% 9.62%

FoolsGold 50.79% 49.45% 47.44% 49.71% 49.95%

Ours 91.71% 91.79% 91.76% 91.67% 91.38%



Ablation Study
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Thanks！


