Attack-Resistant Federated Learning with Residualbased Reweighting

Shuhao Fu¹, Chulin Xie², Bo Li³, Qifeng Chen¹ ¹HKUST, ²Zhejiang University ³UIUC

Contents

Challenges

Targeted Model Poisoning

- Derived from data poisoning
- Label flipping attack
 - Change the label of data so the model will misclassify test samples

In the MNIST example, the adversary changes the label of digit 1 to 7 and uploads the poisoned model.

Observations

Attackers have a **different objective** than honest users.

The malicious objective is more and more **obvious** as

training **converges**

The objectives of models

Intuition

- Attackers have a different
 objective than honest users.
- The malicious objective is more and more **obvious** as training **converges**.

Can we design an algorithm to detect malicious objective, especially when the model converges?

Notations: For each user k in [K], where [K] = 1, 2, ..., K. We use $M^{(k)}$ to denote its model and $y_n^{(k)}$ to denote its n-th parameter. We collect each $y_n^{(k)}$ to form $y_n = [y_n^1, y_n^2, ..., y_n^K]$.

Step 1: Linear Regression

• **Repeated Median Estimation** to estimate a robust distribution of coordinate-wise parameter n.

$$y_n = \beta_{n0} + \beta_{n1} x_n$$

$$\beta_{n1} = \operatorname{median}_{i} \operatorname{median}_{i \neq j} \frac{y_{n}^{(j)} - y_{n}^{(i)}}{x_{n}^{(j)} - x_{n}^{(i)}}$$
$$\beta_{n0} = \operatorname{median}_{i} \operatorname{median}_{i \neq j} \frac{x_{n}^{(j)} y_{n}^{(i)} - x_{n}^{(i)} y_{n}^{(j)}}{x_{n}^{(j)} - x_{n}^{(i)}}$$

Step 2: Weight Computation

• Compute the **residuals (r)** between parameters and the estimated line.

$$r_n = y_n - \beta_{n0} - \beta_{n1} x_n$$

• Normalize residuals

$$e_n^{(k)} = \frac{r_n^{(k)}}{\tau_n}$$
, where $\tau_n = \gamma \widetilde{|r_n|} (1 + \frac{5}{K-1})$
and $\widetilde{|r_n|} = \text{median}(|r_n|)$

Step 2: Weight Computation (Cont.)

• Assign weights according to normalized residuals (e).

$$w_n^{(k)} = \frac{\sqrt{1 - h_{kk}}}{e_n^{(k)}} \Psi(\frac{e_n^{(k)}}{\sqrt{1 - h_{kk}}}).$$

, where $\Psi(x) = max[-Z, min(Z, x)]$ with $Z = \lambda \sqrt{2/K}$ and h_{kk} is the k-th diagonal of matrix $H_n = x_n (x_n^T x_n)^{-1} x_n^T$

- Reweight weights by $oldsymbol{w_n} \leftarrow oldsymbol{w_n} \sigma(oldsymbol{w_n})$
- Weights with larger variations will receive larger weights in the final model.

Step 3: Extreme value correction

- For parameter with $w_n^{(k)}$ less than a **threshold** δ , we change its value to the corresponding value on the estimated line.
- This step removes the extreme values.

Final Step: Reweighted Aggregation

$$M_{global} = \sum_{k=1}^{K} \frac{W^{(k)}}{\sum_{i=1}^{K} W^{(i)}} M^{(k)}.$$

Experiments

Two Scenarios

Label-flipping Attacks

Backdoor Attacks

(m)

Clean image Backdoored image

Datasets

Amazon Reviews Dataset

{
 "reviewerID": "A2SUAM1J3GNN3B",
 "asin": "0000013714",
 "reviewerName": "J. McDonald",
 "helpful": [2, 3],
 "reviewText": "I bought this for my husband who plays the piano.
He is having a wonderful time playing these old hymns. The music is
at times hard to read because we think the book was published for
singing from more than playing from. Great purchase though!",
 "overall": 5.0,
 "summary": "Heavenly Highway Hymns",
 "unixReviewTime": 1252800000,

```
"reviewTime": "09 13, 2009"
```

MNIST Dataset

Model Poisoning Attacks

CIFAR-10 Dataset

# of Attackers	0	1	2	3	4
FedAvg	88.96%	85.74%	82.49%	82.35%	82.11%
Median	88.11%	87.69%	87.15%	85.85%	82.01%
Trimmed Mean	88.70%	88.52%	87.44%	85.36%	82.35%
Repeated Median	88.60%	87.76%	86.97%	85.77%	81.82%
FoolsGold	9.70%	9.57%	10.72%	11.42%	9.98%
Ours	89.17%	88.60%	86.66%	86.09%	85.81%

Amazon Review Dataset

# of Attackers	0	1	2	3	4
FedAvg	91.81%	86.91%	24.97%	12.52%	9.78%
Median	91.73%	91.87%	91.79%	91.43%	91.17%
Trimmed Mean	91.81%	91.82%	91.82%	91.49%	91.26%
Repeated Median	91.55%	88.41%	23.22%	11.70%	9.62%
FoolsGold	50.79%	49.45%	47.44%	49.71%	49.95%
Ours	91.71%	91.79%	91.76%	91.67%	91.38%

Ablation Study

		Original		Median Estimator		Theil-Sen Estimator		Gaussian Weighting	
		Number of attackers		Number of attackers		Number of Attackers		Number of Attackers	
λ (or σ in Gaussian)	Delta	0	9	0	9	0	9	0	9
1	0.01	94.41%	94.54%	94.46%	95.19%	93.76%	92.87%	84.32%	92.22%
1	0.05	93.36%	91.15%	93.37%	93.79%	94.43%	92.70%	87.33%	90.65%
1	0.1	86.93%	89.39%	83.77%	90.93%	92.77%	94.31%	88.31%	89.23%
1	0.2	84.77%	91.40%	70.84%	80.79%	93.28%	93.63%	83.22%	90.28%
2	0.01	94.95%	94.86%	93.34%	94.36%	94.38%	49.28%	91.07%	92.70%
2	0.05	91.45%	93.14%	93.41%	94.86%	95.62%	91.65%	90.85%	93.00%
2	0.1	93.08%	91.84%	94.02%	93.48%	92.29%	93.07%	88.61%	93.15%
2	0.2	86.09%	91.43%	88.84%	92.68%	92.21%	91.70%	90.54%	90.80%
3	0.01	93.83%	94.89%	94.67%	94.68%	94.45%	75.83%	92.46%	93.18%
3	0.05	93.76%	95.86%	93.67%	94.52%	94.86%	94.72%	93.30%	94.25%
3	0.1	94.74%	94.13%	93.11%	91.30%	92.32%	94.70%	92.09%	93.65%
3	0.2	89.11%	93.25%	93.67%	93.76%	94.00%	93.20%	90.88%	93.26%
5	0.01	92.62%	93.77%	93.68%	84.26%	94.69%	93.27%	94.10%	93.58%
5	0.05	94.53%	95.28%	94.23%	94.72%	93.67%	79.91%	92.78%	93.69%
5	0.1	94.23%	94.47%	94.88%	94.69%	94.60%	92.85%	92.81%	93.83%
5	0.2	92.60%	94.23%	92.90%	93.87%	93.51%	91.41%	91.72%	92.93%

Table 4: The results of the controlled experiments by replacing the linear estimator or the weighting scheme with alternative methods. All the experiments are performed on the MNIST dataset with label-flipping attacks.

Thanks!