Improving Adversarial Robustness in Weightquantized Neural Networks

Chang Song ${ }^{1}$, Elias Fallon ${ }^{2}$, Hai Li ${ }^{1}$
cādence
${ }^{1}$ Duke University, ${ }^{2}$ Cadence Design Systems, Inc.

Background - Overview

- With more layers and more complex structures, modern neural networks can achieve near or even beyond human-level accuracy in solving classification problems.
- Security industry has also adopted deep learning techniques in many fields, including surveillance, authentication, facial recognition, etc.
- However, a recent research ${ }^{[1]}$ discovered that neural networks are vulnerable to some delibrately-perturbed examples, though the perturbation is imperceptible to humans. These examples are called adversarial examples.

Background - Decision Space

- Decision space: a vector space where all input samples lie in.
- Decision boundaries: hyper-surfaces that partition the decision space.
- In classification problems, we can define decision boundaries as sets of data points with tied highest score for multiple classes. Or, when a sample moves in one direction until being misclassified, that point will be on a decision boundary.
- In fact, decision boundaries are vague and data points near decision boundaries may not have any physical meaning.
- Adversarial examples are carefully sought points that cross boundaries with minimum effort.

Background - Nonlinearity and Robustness

- Model linearity leads to high success rate of adversarial attacks.
- Error amplification effect: Feature space distances between normal samples and adversarial examples increase layer by layer.
- Three ways to introduce nonlinearity:
- Activation: But sigmoid and ReLU are mainly used in linear regions;
- Pooling (max pooling, average pooling);
- Weight mapping: hard to be integrated in training, easy to map after training.

Related Works

- Quantized neural network are more vulnerable to adversarial attack ${ }^{[1]}$.

(a) Quantization preserves the accuracy till 4-5 bits on clean image.

(b) Quantization no longer preserves the accuracy under adversarial attack (same legend as left).
- Use the Lipschitz constant to upper-bound the model's sensitivity to adversarial examples ${ }^{[2]}$.
- Error amplification effect: smaller Lipschitz constant could control the adversarial perturbation not to be amplified.

Motivation

- The difference in the output of one specific layer:

$$
\delta=\underbrace{(W+\Delta W)}_{\text {Quant.Weight }} \cdot \underbrace{(x+\Delta x)}_{\text {Adv.Input }}-W x=\underbrace{W \Delta x}_{\text {Adv.Loss }}+\underbrace{\Delta W x}_{\text {Quant. Loss }}+\Delta W \Delta x
$$

- Adversarial loss: can be measured by the accuracy drop
- Quantization loss: depends on both weights and inputs, we need an inputindependent criterion to evaluate the quantization process.
- The (quantization) error amplification effect[${ }^{[1]}$: small residual perturbation is amplified to a large magnitude in top layers of a model and finally leads to a wrong prediction.
- The Lipschitz Constant of ΔW :

$$
\|\Delta W\|_{p}=\sup _{z:\|z\|_{p}=1}\|\Delta W z\|_{p}
$$

Motivation

- Adversarial training is more vulnerable to quantization.
- Here F.L. is a boundary-based training method ${ }^{[1]}$.

Motivation (cont.)

- Larger margin between samples and decision boundaries is needed for tolerating the quantization process. Boundary-based training (F.L.) gives more (margin) tolerance to quantization loss.
- Problems with Adversarial training (AdvT):
- AdvT has worse performance against white-box attacks than black-box attacks (same attack strength), as white-box attacks are more fatal.
- But relatively speaking, WB are easier to defend than BB.
- BB need larger strength to downgrade accuracy (transferability matters).
- AdvT doesn't cooperate well with other techniques (quantization-aware training or regularization) $\mathrm{w} / \mathrm{or} \mathrm{w} / \mathrm{o}$ quantization.
- The objective functions/goals are different or even in opposite directions.

Methodology - Feedback Learning ${ }^{[1]}$

- Classes are categorized into three robustness levels:
- High-level: top 20% of all classes, 20 samples are selected for each class.
- Low-level: bottom 50% of all classes, 150 samples are selected for each class.
- Medium-level: all remaining classes, 100 samples are selected for each class.
- Generated example: direction with top-40 minimum margins, $1.5 \mathrm{x}-2.0 \mathrm{x}$ margins to cross boundaries.
- All parameters here are empirical.

Methodology - Nonlinear Mapping

- μ-law algorithm: adopted from wireless communication, mainly to save bandwidth and improve SNR (signal-tonoise ratio).

$$
F(x)=\operatorname{sgn}(x) \frac{\ln (1+\mu|x|)}{\ln (1+\mu)},-1 \leq x \leq 1
$$

- Here, we can regard adversarial perturbations as noises, higher SNR means original components (signals) are more significant.

Methodology - Nonlinear Mapping (cont.)

- Procedures of combining nonlinear mapping with training:

1) Training with other defensive techniques
2) Post-training weight nonlinear mapping

- Which layers to map? Increasing nonlinearity vs. accuracy loss.
- Mapping more layers means higher nonlinearity level, but...
- Mapping feature extractors (convolutional layers) introduces more accuracy loss than mapping classifiers (FC layers) ${ }^{[1]}$.
- Adversarial perturbations have larger impact on models' decision-making than feature extraction.

Experimental Results

- Datasets: MNIST (4-layer CNN) and CIFAR-10 (wide ResNet-32).
- Models: Orig., Adv. (adversarially-trained model), F.L. (feedback learning).
- Attacks (adversarial and non-adversarial): clean image, CW-L2, FGSM, PGD, BIM, Momentum IM, normal noise, uniform noise; white-box and black-box attacks.
- 3-bit quantization, post-training weight quantization only.
- Nonlinear mapping only the last few layers.

CIFAR-10,

Experimental Results - Accuracy on MNIST

- White-box accuracy: ~20\% improvement on F.L. model, no improvement on Orig. and Adv. models.
- F.L. model has better tolerance to error introduced by quantization and nonlinear mapping.
- Black-box accuracy: same robustness after mapping.

Table 1: The accuracy of white-box attacks on MNIST models.

Models	Clean	CW-L2	FGSM (w)	FGSM (s)	PGD	BIM	MIM
Orig.	99.17\%	39.40\%	73.53\%	7.67\%	4.38\%	5.68\%	6.77\%
Orig. (Q)	98.97\%	36.98\%	68.70\%	7.40\%	2.63\%	3.53\%	4.27\%
Adv.	98.40\%	94.51\%	98.01\%	96.24\%	97.77\%	97.41\%	97.32\%
Adv. (Q)	42.69\%	25.56\%	37.28\%	32.28%	33.78\%	31.44%	30.72%
F.L.	99.17\%	51.60\%	89.69\%	39.43\%	39.92\%	41.42\%	43.25\%
F.L. (Q)	98.99\%	49.49\%	87.93\%	38.36%	35.35\%	36.48%	38.33%
Orig.+mu	99.06\%	34.97\%	78.55\%	6.32\%	7.25\%	8.61\%	9.04\%
Orig.+mu (Q)	98.94\%	33.09\%	73.78\%	5.95\%	5.21%	6.32\%	6.82\%
Adv. +mu	97.97\%	91.77\%	97.00\%	95.18\%	96.79\%	95.99\%	95.90\%
Adv.+mu (Q)	37.12\%	28.20\%	35.35\%	31.15\%	34.29\%	32.64\%	32.15\%
F.L. +mu	99.11\%	48.08\%	89.25\%	70.86\%	57.39\%	64.53\%	64.92\%
F.L.+mu (Q)	98.93\%	47.65\%	88.31\%	69.45\%	55.24\%	62.64\%	62.92\%

Table 2: The accuracy of black-box attacks and noises on MNIST models.

Models	CW-L2	FGSM (w)	FGSM (m)	FGSM (s)	Normal	Uniform
Orig.	97.56\%	98.95\%	97.80\%	93.30\%	97.19\%	98.85\%
Orig. (Q)	97.47\%	98.47\%	96.26\%	90.08\%	95.50\%	98.38\%
Adv.	97.28\%	98.30\%	98.22\%	96.17\%	77.16\%	98.37\%
Adv. (Q)	39.42\%	45.09\%	43.14\%	28.02\%	17.62\%	42.99\%
F.L.	97.04\%	98.90\%	97.36\%	94.99\%	97.01\%	98.67\%
F.L. (Q)	96.38\%	98.54\%	96.84\%	94.38\%	96.58\%	98.44\%
Orig.+mu	97.31\%	98.72\%	97.16\%	90.61\%	96.16\%	98.69\%
Orig.+mu (Q)	96.83\%	98.31\%	96.15\%	88.69\%	95.16\%	98.27\%
Adv. + mu	97.44\%	97.83\%	97.62\%	94.09\%	74.06\%	97.81\%
Adv.+mu (Q)	38.02\%	40.06\%	39.60\%	24.48\%	15.69\%	37.32\%
F.L. +mu	97.47\%	98.70\%	96.72\%	93.76\%	96.64\%	98.58\%
F.L. +mu (Q)	97.68\%	98.46\%	96.44\%	93.54\%	96.36\%	98.21\%

Experimental Results - Accuracy on CIFAR-10

- Similar results as MNIST with more significant improvement.
- Adv. model suffers more from quantization.
- White-box robustness improved by mapping in the Orig. model.
- Mapping the last three layers introduce more nonlinearity to models.

Table 3: The accuracy of white-box attacks on CIFAR-10 models.
Table 4: The accuracy of black-box attacks and noises on CIFAR-10 models.

Models	Clean	CW-L2	FGSM (w)	FGSM (s)	PGD	BIM	MIM	Models	CW-L2	FGSM (w)	FGSM (m)	FGSM (s)	Normal	Uniform
Orig.	95.00\%	9.30\%	20.90\%	10.60\%	2.20\%	2.60\%	2.50\%	Orig.	58.90\%	55.07\%	46.87\%	41.12\%	21.40\%	43.80\%
Orig. (Q)	47.92\%	13.60\%	16.80\%	11.90\%	11.10\%	17.80\%	17.70\%	Orig. (Q)	23.00\%	22.60\%	20.64\%	19.17\%	19.30\%	21.80\%
Adv.	87.27\%	54.20\%	74.70\%	36.80\%	66.80\%	57.60\%	59.70\%	Adv.	76.44\%	75.82\%	74.61\%	73.48\%	70.30\%	84.90\%
Adv. (Q)	19.84\%	15.80\%	17.50\%	10.90\%	17.90\%	18.20\%	17.70\%	Adv. (Q)	19.38\%	19.32\%	18.92\%	18.55\%	15.60\%	17.80\%
F.L.	93.77\%	20.30\%	39.70\%	27.50\%	4.00\%	4.00\%	4.00\%	F.L.	64.70\%	61.82\%	57.12\%	53.68\%	79.10\%	85.50\%
F.L. (Q)	90.14\%	21.30\%	42.60\%	28.70\%	5.90\%	5.90\%	5.80\%	F.L. (Q)	62.99\%	60.30\%	56.07\%	52.44\%	72.40\%	81.90\%
Orig.+mu	94.05\%	5.30\%	95.30\%	94.90\%	64.40\%	95.30\%	95.30\%	Orig.+mu	55.95\%	52.58\%	44.74\%	38.62\%	20.90\%	41.00\%
Orig.+mu (Q)	51.55\%	11.60\%	45.10\%	46.80\%	30.80\%	49.50\%	49.40\%	Orig.+mu (Q)	25.64\%	24.53\%	21.41\%	20.01\%	15.80\%	19.30\%
Adv. + mu	85.70\%	51.90\%	83.30\%	83.20\%	81.60\%	83.30\%	83.30\%	Adv.+mu	73.24\%	72.79\%	71.52\%	69.90\%	68.20\%	82.30\%
Adv.+mu (Q)	16.80\%	17.00\%	16.70\%	16.70\%	17.00\%	17.30\%	17.50\%	Adv.+mu (Q)	15.74\%	15.67\%	15.23\%	14.69\%	11.10\%	12.10\%
F.L.+mu	93.80\%	20.70\%	92.80\%	92.30\%	89.50\%	92.80\%	92.80\%	F.L. +mu	63.69\%	60.37\%	55.58\%	52.04%	73.60\%	84.00\%
F.L. $+\mathrm{mu}(\mathrm{Q})$	92.20\%	23.10\%	90.80\%	90.70\%	86.90\%	90.80\%	90.80\%	F.L. $+\mathrm{mu}(\mathrm{Q})$	62.54\%	59.65\%	55.03\%	51.69\%	72.20\%	81.90\%

Duke universitiv

Experimental Results - Ablation Study

- Nonlinearity vs. robustness: CIFAR-10, map only the last layer.
- As μ increases, adversarial robustness is improved, while nonlinear mapping may marginally harm accuracies on nonadversarial attacks.
- These results align with our theoretical assumptions.

Experimental Results - Lipschitz Measurement

- The Lipschitz constant of the quantization weight loss (ΔW) :

$$
\|\Delta W\|_{p}=\sup _{z:\|z\|_{p}=1}\|\Delta W z\|_{p}
$$

- When $p=2,\|\Delta W\|_{2}$ is the maximum singular value of ΔW. $\|\Delta W\|_{2}>1$ means quantization error may be amplified in this layer.
- The adv model has weak tolerance to quantization.
$\|\Delta W\|_{2}$ of each layer in MNIST models.

$\|\Delta W\|_{2}$ of the last five layers in CIFAR-10 models.

Duke $_{\text {onves.s.r }}$

Conclusions

- We observe that adversarially-trained neural networks are vulnerable to quantization loss.
- We theoretically analyze both adversarial and quantization losses and come up with criteria to measure the two losses. We also propose a solution to minimize both losses at the same time.
- The results show that our method is capable of defending both black-box and white-box gradient-based adversarial attacks and minimizing the quantization loss, showing an average accuracy improvement against adversarial attacks of 7.55% on MNIST and 27.84% on CIFAR-10 compared to the next best approach studied.

Thanks for your attention! Q\&A

