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Background - Overview

• With more layers and more complex structures, modern neural networks can 

achieve near or even beyond human-level accuracy in solving classification 

problems.

• Security industry has also adopted deep learning techniques in many fields, 

including surveillance, authentication, facial recognition, etc.

• However, a recent research[1] discovered that neural networks are vulnerable to 

some delibrately-perturbed examples, though the perturbation is imperceptible to 

humans. These examples are called adversarial examples.

[1] Szegedy et al., Intriguing Properties of  

Neural Networks, arXiv, 2013.2



Background – Decision Space

• Decision space: a vector space where all input samples lie in.

• Decision boundaries: hyper-surfaces that partition the decision space.

• In classification problems, we can define decision boundaries as sets of data points

with tied highest score for multiple classes. Or, when a sample moves in one

direction until being misclassified, that point will be on a decision boundary.

• In fact, decision boundaries are vague and data points near decision boundaries

may not have any physical meaning.

• Adversarial examples are carefully sought points that cross boundaries with

minimum effort.
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Background – Nonlinearity and Robustness

• Model linearity leads to high success rate of  adversarial attacks.

• Error amplification effect: Feature space distances between normal samples and 

adversarial examples increase layer by layer.

• Three ways to introduce nonlinearity:

• Activation: But sigmoid and ReLU are mainly used in linear regions;

• Pooling (max pooling, average pooling);

• Weight mapping: hard to be integrated in training, easy to map after training.
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Related Works

• Quantized neural network are more vulnerable to adversarial attack[1].

• Use the Lipschitz constant to upper-bound the model’s sensitivity to adversarial

examples[2].

• Error amplification effect: smaller Lipschitz constant could control the adversarial

perturbation not to be amplified.
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[1] Lin et al., Defensive quantization: When 

efficiency meets robustness, ICLR, 2019.

[2] Cisse et al., Parseval networks: improving 

robustness to adversarial examples, ICML, 2017.



Motivation

• The difference in the output of one specific layer:

𝛿 = 𝑊 + ∆𝑊
𝑄𝑢𝑎𝑛𝑡. 𝑊𝑒𝑖𝑔ℎ𝑡

∙ 𝑥 + ∆𝑥
𝐴𝑑𝑣. 𝐼𝑛𝑝𝑢𝑡

−𝑊𝑥 = 𝑊∆𝑥
𝐴𝑑𝑣. 𝐿𝑜𝑠𝑠

+ ถ∆𝑊𝑥
𝑄𝑢𝑎𝑛𝑡. 𝐿𝑜𝑠𝑠

+ ∆𝑊∆𝑥

• Adversarial loss: can be measured by the accuracy drop

• Quantization loss: depends on both weights and inputs, we need an input-

independent criterion to evaluate the quantization process.

• The (quantization) error amplification effect[1]: small residual perturbation is

amplified to a large magnitude in top layers of a model and finally leads to a wrong

prediction.

• The Lipschitz Constant of ∆𝑊:

∆𝑊 𝑝 = sup
𝑧: 𝑧 𝑝=1

∆𝑊𝑧 𝑝
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[1] Liao, et al. Defense against adversarial attacks using 

high-level representation guided denoiser. CVPR, 2018.



Motivation

• Adversarial training is more vulnerable to quantization.

• Here F.L. is a boundary-based training method[1].

7

Clean Accuracy vs. Quantization bits (MNIST) Clean Accuracy vs. Quantization bits (CIFAR-10)

[1] Song et al., Feedback Learning for Improving the 

Robustness of  Neural Networks, ICMLA, 2019.



Motivation (cont.)

• Larger margin between samples and decision boundaries is needed for tolerating

the quantization process. Boundary-based training (F.L.) gives more (margin)

tolerance to quantization loss.

• Problems with Adversarial training (AdvT):

• AdvT has worse performance against white-box attacks than black-box attacks

(same attack strength), as white-box attacks are more fatal.

– But relatively speaking, WB are easier to defend than BB.

– BB need larger strength to downgrade accuracy (transferability matters).

• AdvT doesn’t cooperate well with other techniques (quantization-aware training or

regularization) w/ or w/o quantization.

– The objective functions/goals are different or even in opposite directions.
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Methodology – Feedback Learning[1]

• Classes are categorized into three robustness levels:

• High-level: top 20% of  all classes, 20 samples are selected for each class.

• Low-level: bottom 50% of  all classes, 150 samples are selected for each class.

• Medium-level: all remaining classes, 100 samples are selected for each class.

• Generated example: direction with top-40 minimum margins, 1.5x-2.0x margins to 
cross boundaries.

• All parameters here are empirical.
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[1] Song et al., Feedback Learning for Improving the 

Robustness of  Neural Networks, ICMLA, 2019.



Methodology – Nonlinear Mapping

• µ-law algorithm: adopted from wireless

communication, mainly to save

bandwidth and improve SNR (signal-to-

noise ratio).

• Here, we can regard adversarial

perturbations as noises, higher SNR

means original components (signals) are

more significant.

https://web.stanford.edu/class/ee179/lectures/notes12.pdf10



Methodology – Nonlinear Mapping (cont.)

• Procedures of  combining nonlinear mapping with training:

1) Training with other defensive techniques

2) Post-training weight nonlinear mapping

• Which layers to map? Increasing nonlinearity vs. accuracy loss.

• Mapping more layers means higher nonlinearity level, but…

• Mapping feature extractors (convolutional layers) introduces more accuracy

loss than mapping classifiers (FC layers)[1].

• Adversarial perturbations have larger impact on models’ decision-making than

feature extraction.

[1] Inkawhich et al., Feature Space Perturbations Yield 

More Transferable Adversarial Examples, CVPR, 2019.11



Experimental Results

• Datasets: MNIST (4-layer CNN) and CIFAR-10 (wide ResNet-32).

• Models: Orig., Adv. (adversarially-trained model), F.L. (feedback learning).

• Attacks (adversarial and non-adversarial): clean image, CW-L2, FGSM, PGD, BIM, 

Momentum IM, normal noise, uniform noise; white-box and black-box attacks.

• 3-bit quantization, post-training weight quantization only.

• Nonlinear mapping only the last few layers.

F.L. w/o 

mapping
F.L. w/ 

mappingCIFAR-10, 

last layer
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Experimental Results – Accuracy on MNIST

• White-box accuracy: ~20% improvement on F.L. model, no improvement on Orig. and Adv. 

models.

– F.L. model has better tolerance to error introduced by quantization and nonlinear mapping.

• Black-box accuracy: same robustness after mapping.
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Experimental Results – Accuracy on CIFAR-10

• Similar results as MNIST with more significant improvement.

– Adv. model suffers more from quantization. 

– White-box robustness improved by mapping in the Orig. model.

• Mapping the last three layers introduce more nonlinearity to models.
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Experimental Results – Ablation Study

• Nonlinearity vs. robustness: CIFAR-10,

map only the last layer.

• As µincreases, adversarial robustness is

improved, while nonlinear mapping may

marginally harm accuracies on non-

adversarial attacks.

• These results align with our theoretical

assumptions.
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Experimental Results – Lipschitz Measurement

• The Lipschitz constant of  the quantization weight loss (∆𝑊):

∆𝑊 𝑝 = 𝑠𝑢𝑝
𝑧: 𝑧 𝑝=1

∆𝑊𝑧 𝑝

• When 𝑝 = 2, ∆𝑊 2 is the maximum singular value of  ∆𝑊. ∆𝑊 2 > 1 means quantization error 

may be amplified in this layer.

• The adv model has weak tolerance to quantization.

∆𝑊 2 of  each layer in MNIST models. ∆𝑊 2 of  the last five layers in CIFAR-10 models.
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Conclusions

• We observe that adversarially-trained neural networks are vulnerable to

quantization loss.

• We theoretically analyze both adversarial and quantization losses and come up

with criteria to measure the two losses. We also propose a solution to minimize

both losses at the same time.

• The results show that our method is capable of defending both black-box and

white-box gradient-based adversarial attacks and minimizing the quantization

loss, showing an average accuracy improvement against adversarial attacks of

7.55% on MNIST and 27.84% on CIFAR-10 compared to the next best approach

studied.
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